A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property
نویسنده
چکیده
In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve good performance with respect to the Restricted Isometry Property (RIP). Most currently known deterministic constructions of matrices satisfying the RIP fall into this category, and hence these constructions suffer inherent limitations. In particular, we show that DeVore’s construction of matrices satisfying the RIP is close to optimal once we add the constraint that all entries of the matrix are 0 or 1.
منابع مشابه
Explicit Matrices with the Restricted Isometry Property: Breaking the Square-Root Bottleneck
Matrices with the restricted isometry property (RIP) are of particular interest in compressed sensing. To date, the best known RIP matrices are constructed using random processes, while explicit constructions are notorious for performing at the “square-root bottleneck,” i.e., they only accept sparsity levels on the order of the square root of the number of measurements. The only known explicit ...
متن کاملRandom Subdictionaries and Coherence Conditions for Sparse Signal Recovery
The most frequently used condition for sampling matrices employed in compressive sampling is the restricted isometry (RIP) property of the matrix when restricted to sparse signals. At the same time, imposing this condition makes it difficult to find explicit matrices that support recovery of signals from sketches of the optimal (smallest possible) dimension. A number of attempts have been made ...
متن کاملExplicit RIP Matrices in Compressed Sensing from Algebraic Geometry
Compressed sensing was proposed by E. J. Candés, J. Romberg, T. Tao, and D. Donoho for efficient sampling of sparse signals in 2006 and has vast applications in signal processing. The expicit restricted isometry property (RIP) measurement matrices are needed in practice. Since 2007 R. DeVore, J. Bourgain et al and R. Calderbank et al have given several deterministic cosntrcutions of RIP matrice...
متن کاملThe Restricted Isometry Property for Random Block Diagonal Matrices
In Compressive Sensing, the Restricted Isometry Property (RIP) ensures that robust recovery of sparsevectors is possible from noisy, undersampled measurements via computationally tractable algorithms. Itis by now well-known that Gaussian (or, more generally, sub-Gaussian) random matrices satisfy the RIPunder certain conditions on the number of measurements. Their use can be limi...
متن کاملExplicit constructions of RIP matrices and related problems
We give a new explicit construction of n × N matrices satisfying the Restricted Isometry Property (RIP). Namely, for some ε > 0, large N and any n satisfying N1−ε ≤ n ≤ N , we construct RIP matrices of order k ≥ n and constant δ−ε. This overcomes the natural barrier k = O(n) for proofs based on small coherence, which are used in all previous explicit constructions of RIP matrices. Key ingredien...
متن کامل